
Week 7 - Friday

 What did we talk about last time?
 Practice using malloc()
 Allocating multi-dimensional arrays

In theory, theory and practice are the same. In practice,
they’re not.

Yoggi Berra

 We know how to dynamically allocate a regular array
 How would you dynamically allocate a 2D array?
 In C, you can't do it in one step
 You have to allocate an array of pointers
 Then you make each one of them point at an appropriate place in

memory

 One way to dynamically allocate a 2D array is to
allocate each row individually

 When finished, you can access table like any 2D
array

int** table = (int**)malloc (sizeof(int*)*rows);

for (int i = 0; i < rows; ++i)
table[i] = (int*)malloc (sizeof(int)*columns);

table[3][7] = 14;

table

Chunks of data
that could be
anywhere in
memory

 To free a 2D array allocated with the Ragged Approach
 Free each row separately
 Finally, free the array of rows

for (int i = 0; i < rows; ++i)
free (table[i]);

free (table);

 Alternatively, you can allocate the memory for all rows at
once

 Then you make each row point to the right place

 When finished, you can still access table like any 2D array

int** table = (int**)malloc (sizeof(int*)*rows);
int* data = (int*)malloc (sizeof(int)*rows*columns);

for(int i = 0; i < rows; ++i)
table[i] = &data[i*columns];

table[3][7] = 14;

table

Contiguously allocated memory

 To free a 2D array allocated with the Contiguous Approach
 Free the big block of memory
 Free the array of rows
 No loop needed

free (table[0]);
free (table);

 There are really low level functions brk() and sbrk()
which essentially increase the maximum size of the heap

 You can use any of that space as a memory playground
 malloc() gives finer grained control
 But also has additional overhead

 malloc() sees a huge range of free memory when the program starts
 It uses a doubly linked list to keep track of the blocks of free memory,

which is perhaps one giant block to begin with
 As you allocate memory, a free block is often split up to make the block

you need
 The returned block knows its length
 The length is usually kept before the data that you use

Allocated SpaceLength

Returned pointer

 The free list is a doubly linked list of available blocks of memory
 Each block knows its length, the next block in the list, and the previous

block
 In a 32-bit architecture, the length, previous, and next data are all 4 bytes
 Free block

 Allocated block

 In 64-bit, they're probably all 8 bytes

Free SpaceLength Previous Next

Allocated SpaceLength

 Here's a visualization of the free list
 When an item is freed, most implementations will try to

coalesce two neighboring free blocks to reduce fragmentation
 Calling free() has some time overhead

Head

AllocatedLFreeL P N FreeL P N

NULL NULL

 void* calloc(size_t items, size_t size);
 Clear and allocate items items, each with size size
 Memory is zeroed out

 void* realloc(void* pointer, size_t size);
 Resize a block of memory pointed at by pointer, usually to be larger
 If there is enough free space at the end, realloc() will tack that on
 Otherwise, it allocates new memory and copies over the old

 void* alloca(size_t size);
 Dynamically allocate memory on the stack (at the end of the current frame)
 Automatically freed when the function returns
 You need to #include <alloca.h>

 Layout for 32-bit
architecture
 Could only address

4GB
 Modern layouts often

have random offsets
for stack, heap, and
memory mapping for
security reasons Text

Data

BSS

Heap

Memory Mapping

Stack

Kernel Space 1GB

3GB

0xc0000000

0x40000000

0x08048000
0x00000000

Only for Linux kernel

Memory for function
calls

Addresses for
memory mapped files

Dynamically allocated
data

Uninitialized globals

Initialized globals

Program code

 The Linux machines in this lab use 64-bit processors with 64-bit
versions of Ubuntu

 Our version of gcc supports 64-bit operations
 Our pointers are 8 bytes in size

 But 64-bit stuff is confusing
 They're still working out where the eventual standard will be
 64-bit addressing allows 16,777,216 terabytes of memory to be addressed

(far beyond what anyone needs)
 Current implementations only use 48 bits
 User space (text up through stack) gets low 128 terabytes
 Kernel space gets the high 128 terabytes

#include <stdio.h>
#include <stdlib.h>

int global = 10;

int main()
{

int stack = 5;
int *heap = (int*)malloc (sizeof(int)*100);
printf ("Stack: %p\n", &stack);
printf ("Heap: %p\n", heap);
printf ("Global: %p\n", &global);
printf ("Text: %p\n", main);
return 0;

}

 C provides the rand() function in stdlib.h
 rand() uses a linear congruential generator (LCG) to

generate pseudorandom numbers
 rand() generates an int in the range 0 to RAND_MAX (a

constant defined in stdlib.h)

 LCGs use the following relation to determine the next
pseudorandom number in a sequence
 𝑥𝑥𝑖𝑖+1 = 𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑐𝑐 mod 𝑚𝑚

 I believe our version of the glibc uses the following values
for rand()
 a = 1103515245
 c = 12345
 m = 231 = 2147483648

 If you want values between 0 and n (not including n), you
usually mod the result by n

//dice rolls
int die = 0;
for (int i = 0; i < 10; ++i)
{
die = rand () % 6 + 1; //[0,5] + 1 is [1,6]
printf ("Die value: %d\n", die);

}

 Every time I run the program, I get the same sequence of
random numbers
 Pseudorandom, indeed!

 This problem is fundamental to LCGs
 The pseudorandom number generated at each step is

computed by the number from the previous step
 By default, the starting point is 1

 To overcome the problem, we call srand()which allows us to
set a starting point for the random numbers

 But, if I always start with 93, I'll still always get the same sequence
of random numbers each time I run my program

 I need a random number to put into srand()
 I need a random number to get a random number?

int random = 0;
srand (93);
random = rand (); //starts from seed of 93

 Well, time changes when you run your program
 The typical solution is to use the number of seconds since January

1, 1970 as your seed
 To get this value, call the time() function with parameter NULL
 You'll need to include time.h

int die = 0;
srand (time(NULL));
for (int i = 0; i < 10; ++i)
{
die = rand () % 6 + 1; //[0,5] + 1 is [1,6]
printf ("Die value: %d\n", die);

}

 Include the following headers:
 stdlib.h
 time.h

 Use rand() % n to get values between 0 and n – 1
 Always call srand(time(NULL)) before your first call to
rand()

 Only call srand() once per program
 Seeding multiple times makes no sense and usually makes your

output much less random

 Dynamically allocate an 8 × 8 array of char values
 Loop through each element in the array
 With 1/8 probability, put a 'Q' in the element, representing a queen
 Otherwise, put a ' ' (space) in the element

 Print out the resulting chessboard
 Use | and – to mark rows and columns

 Print out whether or not there are queens that can attack each
other

 Debugging
 Structs

 Finish Project 3
 Due tonight!

 Keep working on Project 4

	COMP 2400
	Last time
	Questions?
	Project 4
	Quotes
	Allocating 2D Arrays
	Allocating 2D arrays
	Ragged Approach
	Ragged Approach in memory
	Freeing the Ragged Approach
	Contiguous Approach
	Contiguous Approach in memory
	Freeing the Contiguous Approach
	Memory Allocation (System Side)
	Memory allocation as seen from the system
	How does malloc() work?
	Free and allocated blocks
	Free list
	Other memory functions
	Process memory segments
	Why aren't I showing the 64-bit version?
	Let's see those addresses
	Random Numbers
	Random numbers
	Linear congruential generators
	How do I use it?
	Wait …
	Seeding rand()
	Time is on our side
	Rules for random numbers
	Example
	Upcoming
	Next time…
	Reminders

