
Week 7 - Friday



 What did we talk about last time?
 Practice using malloc()
 Allocating multi-dimensional arrays







In theory, theory and practice are the same. In practice, 
they’re not.

Yoggi Berra





 We know how to dynamically allocate a regular array
 How would you dynamically allocate a 2D array?
 In C, you can't do it in one step
 You have to allocate an array of pointers
 Then you make each one of them point at an appropriate place in 

memory



 One way to dynamically allocate a 2D array is to 
allocate each row individually

 When finished, you can access table like any 2D 
array

int** table = (int**)malloc (sizeof(int*)*rows);

for (int i = 0; i < rows; ++i)
table[i] = (int*)malloc (sizeof(int)*columns);

table[3][7] = 14;



table

Chunks of data 
that could be 
anywhere in 
memory



 To free a 2D array allocated with the Ragged Approach
 Free each row separately
 Finally, free the array of rows

for (int i = 0; i < rows; ++i)
free (table[i]);

free (table);



 Alternatively, you can allocate the memory for all rows at 
once

 Then you make each row point to the right place

 When finished, you can still access table like any 2D array

int** table = (int**)malloc (sizeof(int*)*rows);
int* data = (int*)malloc (sizeof(int)*rows*columns);

for(int i = 0; i < rows; ++i)
table[i] = &data[i*columns];

table[3][7] = 14;



table

Contiguously allocated memory



 To free a 2D array allocated with the Contiguous Approach
 Free the big block of memory
 Free the array of rows
 No loop needed

free (table[0]);
free (table);





 There are really low level functions brk() and sbrk()
which essentially increase the maximum size of the heap

 You can use any of that space as a memory playground
 malloc() gives finer grained control
 But also has additional overhead



 malloc() sees a huge range of free memory when the program starts
 It uses a doubly linked list to keep track of the blocks of free memory, 

which is perhaps one giant block to begin with
 As you allocate memory, a free block is often split up to make the block 

you need
 The returned block knows its length
 The length is usually kept before the data that you use

Allocated SpaceLength

Returned pointer



 The free list is a doubly linked list of available blocks of memory
 Each block knows its length, the next block in the list, and the previous 

block
 In a 32-bit architecture, the length, previous, and next data are all 4 bytes
 Free block

 Allocated block

 In 64-bit, they're probably all 8 bytes

Free SpaceLength Previous Next

Allocated SpaceLength



 Here's a visualization of the free list
 When an item is freed, most implementations will try to 

coalesce two neighboring free blocks to reduce fragmentation
 Calling free() has some time overhead
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 void* calloc(size_t items, size_t size);
 Clear and allocate items items, each with size size
 Memory is zeroed out

 void* realloc(void* pointer, size_t size);
 Resize a block of memory pointed at by pointer, usually to be larger
 If there is enough free space at the end, realloc() will tack that on
 Otherwise, it allocates new memory and copies over the old

 void* alloca(size_t size);
 Dynamically allocate memory on the stack (at the end of the current frame)
 Automatically freed when the function returns
 You need to #include <alloca.h>



 Layout for 32-bit 
architecture
 Could only address 

4GB
 Modern layouts often 

have random offsets 
for stack, heap, and 
memory mapping for 
security reasons Text
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 The Linux machines in this lab use 64-bit processors with 64-bit 
versions of Ubuntu

 Our version of gcc supports 64-bit operations
 Our pointers are 8 bytes in size

 But 64-bit stuff is confusing
 They're still working out where the eventual standard will be
 64-bit addressing allows 16,777,216 terabytes of memory to be addressed 

(far beyond what anyone needs)
 Current implementations only use 48 bits
 User space (text up through stack) gets low 128 terabytes
 Kernel space gets the high 128 terabytes



#include <stdio.h>
#include <stdlib.h>

int global = 10;

int main()
{

int stack = 5;
int *heap = (int*)malloc (sizeof(int)*100);
printf ("Stack:  %p\n", &stack);
printf ("Heap:   %p\n", heap);
printf ("Global: %p\n", &global);
printf ("Text:   %p\n", main);
return 0;

}





 C provides the rand() function in stdlib.h
 rand() uses a linear congruential generator (LCG) to 

generate pseudorandom numbers
 rand() generates an int in the range 0 to RAND_MAX (a 

constant defined in stdlib.h)



 LCGs use the following relation to determine the next 
pseudorandom number in a sequence
 𝑥𝑥𝑖𝑖+1 = 𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑐𝑐 mod 𝑚𝑚

 I believe our version of the glibc uses the following values 
for rand()
 a = 1103515245
 c = 12345
 m = 231 = 2147483648



 If you want values between 0 and n (not including n), you 
usually mod the result by n

//dice rolls
int die = 0;
for (int i = 0; i < 10; ++i)
{
die = rand () % 6 + 1; //[0,5] + 1 is [1,6]
printf ("Die value: %d\n", die);

}



 Every time I run the program, I get the same sequence of 
random numbers
 Pseudorandom, indeed!

 This problem is fundamental to LCGs
 The pseudorandom number generated at each step is 

computed by the number from the previous step
 By default, the starting point is 1



 To overcome the problem, we call srand()which allows us to 
set a starting point for the random numbers

 But, if I always start with 93, I'll still always get the same sequence 
of random numbers each time I run my program

 I need a random number to put into srand()
 I need a random number to get a random number?

int random = 0;
srand (93);
random = rand (); //starts from seed of 93



 Well, time changes when you run your program
 The typical solution is to use the number of seconds since January 

1, 1970 as your seed
 To get this value, call the time() function with parameter NULL
 You'll need to include time.h

int die = 0;
srand (time(NULL));
for (int i = 0; i < 10; ++i)
{
die = rand () % 6 + 1; //[0,5] + 1 is [1,6]
printf ("Die value: %d\n", die);

}



 Include the following headers:
 stdlib.h
 time.h

 Use rand() % n to get values between 0 and n – 1
 Always call srand(time(NULL)) before your first call to 
rand()

 Only call srand() once per program
 Seeding multiple times makes no sense and usually makes your 

output much less random



 Dynamically allocate an 8 × 8 array of char values
 Loop through each element in the array
 With 1/8 probability, put a 'Q' in the element, representing a queen
 Otherwise, put a ' ' (space) in the element

 Print out the resulting chessboard
 Use | and – to mark rows and columns

 Print out whether or not there are queens that can attack each 
other





 Debugging
 Structs



 Finish Project 3
 Due tonight!

 Keep working on Project 4
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